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Exercise 6.2.1: While uniform convergence pre-
serves continuity, it does not preserve differen-
tiability. Find an explicit example of a sequence
of differentiable functions on [−1, 1] that converge
uniformly to a function f such that f is not differ-
entiable.

Hint: There are many possibilities, simplest is perhaps to combine |x| and
n
2 · x

2 + 1
2n , another is to consider sqrtx+ (1/n) . Show that these functions

are differentiable, converge uniformly, and then show that the limit is not dif-
ferentiable.

fn → funiformly ↔ ∀ε > 0, ∃NεZ+ : ∀n > N
|fn(x)− f(x)| < ε
Work leading up to the proof:

fn(x) =
√
x2 − 1

n2

f
′

n(x) = x√
x2− 1

n2

f
′

n(x) = 0 when x=0

f
′

n(0) =
√

02 − ( 1
2 )2 =

√
−1
n = i

n

This is the maximum of the sequence (setting the derivative equal to zero and
solving.

now, |fn(x)− 0| ≤
√
−1
n < ε

−1
n < ε2
−1
ε2 < n
this is the n value that we will need.

Proof:
let ε > 0 choose N > −1

ε2
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∀n > N, ∀xεR
|fn(x)− 0| =

√
x2 − ( 1

n )2 ≤
√
−1
n

since n > N > 1
ε2

so, n > −1 · 1
ε2
√
n >

√
−1
ε2

√
n >

√
−1
ε

ε >
√
−1
n

Thus, |fn(x)− 0| ≤
√
−1
n < ε

Exercise 6.2.4: Show limn→∞
∫ 2
1 e
−nx2dx = 0

limn→∞
∫ 2

1
e−nx

2

dx = 0

limn→∞
−2

2n(2) · e
−nx2

from 1 to 2

limn→∞
−1

2n(2) · e
−n·(2)2 − ( −12n(1) · e

−n·12)

limn→∞
−1
4n · e

−4n + 1
2n · e

−n

as n→∞ −1
4n → 0 and 1

2n → 0
recall that e−n is equivalent to 1

en so as n→∞, 1
en →

1
∞ → 0 and 0 · 0 = 0 so

this integral is true.

6.2.5 Find an example of a sequence of continuous
functions on [0, 1] that converges pointwise to a
continuous function on [0, 1], but the convergence
is not uniform.

Recall fn → f is pointwise if and only if ε > 0, ∀xε[0, 1] ∃NεZ+: ∀n > N
|fn(x)− f(x)| < ε

Equation of choice: fn(x) = nxe−nx

Scratchwork:
ε > 0, xε[0, 1]
If x=0 fn(0) = 0 then |fn(0)− 0| = |0− 0| < ε
If x 6= 0 then |fn(x)− 0| < ε
|nxe−nx| < ε, x is between zero and one so we do not need the absolute value
anymore: nxe−nx < ε

Recall the maclauren series: ex = 1 + x+ x2

2! + · · · we will compare this to what
we have:
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enx > (nx)2

2!

1
enx <

2
(nx)2

nx
enx = nx( 1

enx ) < nx · 2
(nx)2 = 2

nx < ε

now we solve for n: 2
x < nε

2
xε < n
n > 2

xε

Now that this scratchwork is complete we can reformulate it in the reverse
to make the proof:
let ε > 0 and xε[0, 1]
we can choose an n such that N > 2

xε

Case 1: if x=0, then you can choose any NεZ+ then ∀n > N |fn(0) − 0| =
|0− 0| = 0 < ε
in this case when x=0 the proof is done.

Case 2: when x 6= 0 choose N > 2
xε

then ∀n > N , |fn(x)− 0| = |nxe−nx| = nx
enx

nx 1
enx <

2nx
(nx)2 = 2

nx

Since n > N > 2
xε we now need to know that this is less than ε

n > 2
xε so xε

2 · n > 1
then xε

2 > 1
n

so 1
n <

xε
2

Thus |fn(x)− 0| = nx
enx <

2
nx = 1

n ·
2
x <

xε
2 ·

2
x = ε

This particular Problem the n vale depends on both ε and x which makes it
converge solely pointwise and NOT uniform; recall the difference:

Converging Pointwise:

fn → f pointwise if ∀ε > 0 and ∀xεE then ∃NεZ+ : ∀n > N |fn(x)− f(x)|
Here N can depend on ε and, or x, therefore, it can converge at 2 different rates.

Uniform Convergence

fn → f uniformly if ∀ε > 0 ∃NεZ+ : ∀n > N and ∀xεE|fn(x)− f(x)|
Here N will only depend of ε thus, being uniform because the entire function
depends solely on ε and converges all at the same rate.
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Suppose fn : [a, b]→ R is a sequence of continuous
functions that converges pointwise to a continu-
ous f : [a, b]→ R. Suppose that for any xε[a, b] the
sequence |fn(x)f(x)| is monotone. Show that the
sequence fn converges uniformly.

We need to find an n that satisifies the following:
fn → f uniformly if ∀ε > 0 ∃NεZ+ : ∀n > N and ∀xεE|fn(x)− f(x)|
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