

Hypertext Structured Proof Practice: Induction of Divisibility

Emily West

February 2020

Induction of Divisibility

Use induction to prove that $4|(7^n - 3^n) \forall n \geq 0$

Proof:

Let $n=0$, Then $P(0) = 7^0 - 3^0 = 0$

Therefore, $4|0$ and $4|(7^n - 3^n)$

Assume $P(k)$ is true $\forall k \geq 0$ such that $4|(7^k - 3^k)$ is true.

Show that $P(k+1)$ is also true. That is $\exists r \in \mathbb{Z} : 7^{k+1} - 3^{k+1} = 4r$.

$4|7^k - 3^k$ symbolically $\exists l \in \mathbb{Z} : 7^k - 3^k = 4l$

$7^{k+1} - 3^{k+1} = 7^k \cdot 7 - 3^k$.

$$= 7(4l + 3^k) - 3^k \cdot 3$$

$$= 4(7l + 3^k)$$

Let $7l + 3^k = r \in \mathbb{Z}$

Then $4(7l + 3^k) = 4r$

Therefore, $4|7^{k+1} - 3^{k+1}$

Proven by the mathematical induction principle.

Explanation of Divisibility

Definition of Divisibility: If n and d are integers then n is divisible by d if, and only if, n equals d times some integer and d is not equal to zero.

Therefore 4 divides 0, zero times: $0=4*k$ when $k=0$

Substitution Breakdown

From the Induction hypothesis we have: $7^k - 3^k = 4l$

By rearranging this statement we'll get: $7^k = 4l + 3^k$

Now expanding the statement we want to prove $7^{k+1} - 3^{k+1} = 7^k \cdot 7^1 - 3^k \cdot 3$

We can now substitute to get: $7(4l+3^k) - 3^k \cdot 3$

$$28l + 7 \cdot 3^k * 3 - 3^k \cdot 3$$

$$28l + (7 - 3)3^k$$

$$28l + 4 \cdot 3^k$$

$$4(7l + 3^k)$$

Let $7l + 3^k = r \in \mathbb{Z}$

Then $4(7l + 3^k) = 4r$

Therefore, $4|7^{k+1} - 3^{k+1}$