

Chapter 6 Practice Problems

Emily West

March 27, 2020

**6.1.1: Let f and g be bounded functions on $[a,b]$,
Prove: $\|f + g\|_u \leq \|f\|_u + \|g\|_u$**

Proof: By squaring the left hand side you'll get:

$$(\|f + g\|_u)^2 = \|f + g\|_u \cdot \|f + g\|_u \quad (1a)$$

$$\|f\|_u^2 + \|2fg\|_u + \|g\|_u^2 \quad (1b)$$

Now by squaring the right hand side you'll get:

$$(\|f\|_u + \|g\|_u)^2 = (\|f\|_u + \|g\|_u) \cdot (\|f\|_u + \|g\|_u) \quad (1c)$$

$$\|f\|_u^2 + 2\|fg\|_u + \|g\|_u^2 \quad (1d)$$

This shows that the LHS is equal to the RHS, thus, if they are equal the inequality is true:

$$\|f\|_u^2 + \|2fg\|_u + \|g\|_u^2 = \|f\|_u^2 + 2\|fg\|_u + \|g\|_u^2 \quad (2a)$$

$$\|f + g\|_u \leq \|f\|_u + \|g\|_u \quad (2b)$$

6.1.2 (a) Find the pointwise limit $\frac{e^{x/n}}{n}$ for $x \in R$

Fix x and let n go to infinity.

Case 1: $x > 0$ as $n \rightarrow \infty$

$x/n \rightarrow 0$ as $n \rightarrow \infty$

$e^0 = 1$

$\frac{1}{n} \rightarrow 0$

Case 2: $x < 0$ as $n \rightarrow \infty$

The smaller the negative number is the exponential will approach zero.

$e^0 = 1 \cdot \frac{1}{n} \rightarrow 0$

Case 3: $x = 0$

$e^0 = 1$

$$\frac{1}{n} \rightarrow 0$$

This function converges to zero for all of R . Therefore f exists and $f(x)=0$ for every $x \in R$.

6.1.2 (b) Is the limit uniform on R

The series of functions here does not converge uniformly, since each f_n is unbounded.

6.1.2 (c) Is the limit uniform on $[0,1]$

Recall Proposition 6.1.13: Let $f_n : S \rightarrow R$ be bounded functions. Then f_n is Cauchy in the uniform norm if and only if there exists an $f : S \rightarrow R$ and f_n converges uniformly to f .

Take any $\epsilon > 0$ and make $N > \frac{e}{\epsilon}$
 Then $\frac{e^{x/n}}{n} \leq \frac{e^{1/n}}{n}$
 $\leq \frac{e^1}{n} \leq \frac{e}{n} < \epsilon$
 It can be concluded that $f \rightarrow 0$ is uniform on $[0,1]$

6.1.9: Let $f_n : [0,1] \rightarrow R$ be a sequence of increasing functions (that is, $f_n(x) \geq f_n(y)$ whenever $x \geq y$). Suppose $f_n(0) = 0$ and $\lim f_n(1) = 0$. Show that f_n converges uniformly to 0.