

Chapter 3.1: Limit of Functions Homework

Emily West

Exercise 3.1.1 Find the limit or prove that the limit does not exist: $\text{Limit}[\sqrt{x}, x \rightarrow c]$

let $\text{Limit}[\sqrt{x}, x \rightarrow c] = \sqrt{c}$ for $c \geq 0$

now, make $|\sqrt{x} - \sqrt{c}|$ arbitrarily small by making $|x-c|$ small enough

(think of this as a difference of two squares):

let $x = (\sqrt{x})^2$ and $c = (\sqrt{c})^2$

$$\text{therefore } |x-c| = |\sqrt{x} - \sqrt{c}| |\sqrt{x} + \sqrt{c}| \\ = |\sqrt{x} - \sqrt{c}| = \frac{|\sqrt{x} - \sqrt{c}|}{\sqrt{x} + \sqrt{c}}$$

Choosing a random interval from c to $c + \frac{3c}{4}$ and c to $c - \frac{3c}{4}$

take $\frac{c}{4} \leq x \leq \frac{7c}{4}$

then $\frac{-3c}{4} \leq x - c \leq \frac{3c}{4}$

so $|x-c| = \frac{3c}{4}$

and $\sqrt{x} \geq \frac{\sqrt{5}}{2}$

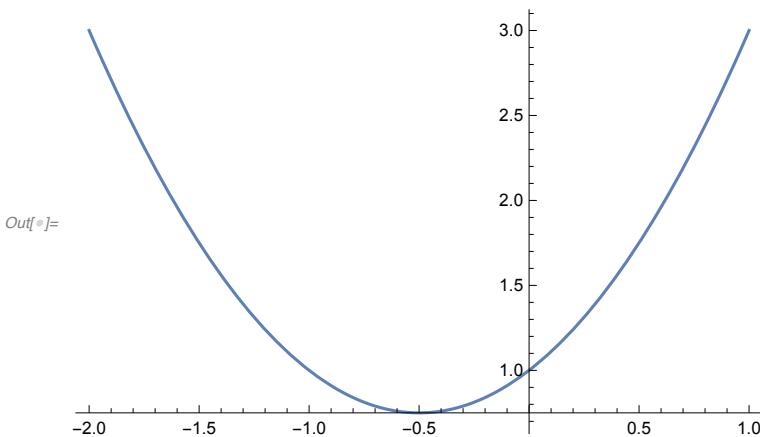
so $\sqrt{x} + \sqrt{c} \geq \frac{\sqrt{c}}{2} + \sqrt{c} = \frac{3\sqrt{c}}{2}$

and $|\sqrt{x} - \sqrt{c}| \leq \frac{2}{3\sqrt{c}} |x - c|$

yes, the limit exists

$\text{Limit}[x^2 + x + 1, x \rightarrow c]$ for any $c \in \mathbb{R}$

$\text{In}[f]:= \text{Plot}[x^2 + x + 1, \{x, -2, 1\}]$



$$|f(x) - L| = |(x^2 + x + 1) - (c^2 + c + 1)|$$

$$= |(x^2 + x) - (c^2 + c)|$$

$$= |x - c| |x + c + 1|$$

$$|x-c|=|x-1|<\delta$$

$$|f(x)-L| < \delta(|x|+|c|+1)$$

then because $0 < |x-c| < 1$ and $|x| < |c|+1$

$$|f(x)-L| < \delta(|c|+1+|c|+1) < \delta(2|c|+2)$$

$$\delta = \min \left\{ 1, \frac{\epsilon}{2|c|+2} \right\}$$

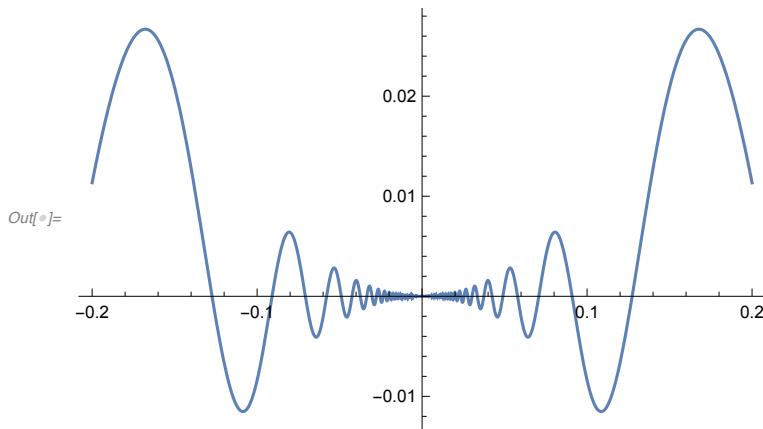
$$|f(x)-L| = |(x^2+x+1)-(c^2+c+1)| < \frac{\epsilon}{2|c|+2} (|2|c|+2) = \epsilon$$

$$|f(x)-L| < \epsilon$$

Limit[x^2 Cos[1/x], x → 0]

When x is positive or negative and is approaching zero $\cos(1/x)$ will oscillate between one and negative one, so the this limit primarily focuses on the function x^2

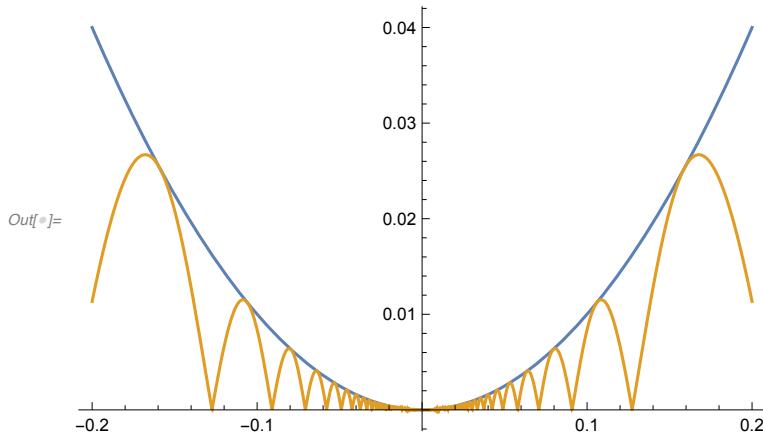
In[1]:= Plot[x^2 * Cos[1/x], {x, -0.2, 0.2}]



The plot above is showing $x^2 * \cos[1/x]$.

Where as the one below is plotting x^2 in blue and the absolute value of $\cos[1/x]$ in yellow. This is to show that $\cos[1/x] < x^2$ therefore since $\cos[1/x]$ oscillates between 1 and -1 the shape of the graph is dependant on x^2 .

```
In[1]:= Plot[{x^2, Abs[x^2 * Cos[1/x]]}, {x, -0.2, 0.2}]
```



exploratory:

$$|f(x) - L| < \epsilon$$

$$|x^2 * \cos[1/x] - 0| < \epsilon$$

$$|x^2| |\cos[1/x]| < \epsilon$$

Since the limit of $\cos[1/x]$ does not exist we are left with $x^2 < \epsilon$

$$x < \sqrt{\epsilon}$$

$$\delta = \sqrt{\epsilon}$$

Proof:

given $\epsilon > 0$

$$\text{let } \delta = \sqrt{\epsilon}$$

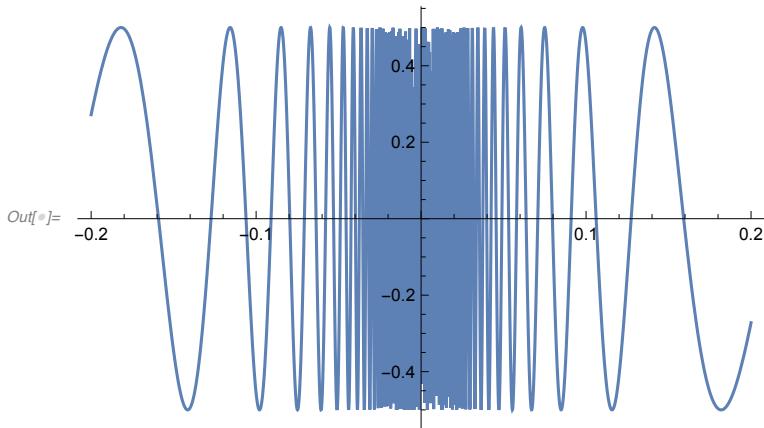
$$\text{then if } |x - 0| = |x^2 * \cos[1/x] - 0|$$

$$\begin{aligned} &= |x^2 * \cos[1/x]| \leq |x|^2 \\ &\leq (\sqrt{\epsilon})^2 \leq \epsilon \end{aligned}$$

Limit[sin(1/x) cos(1/x), x → 0]

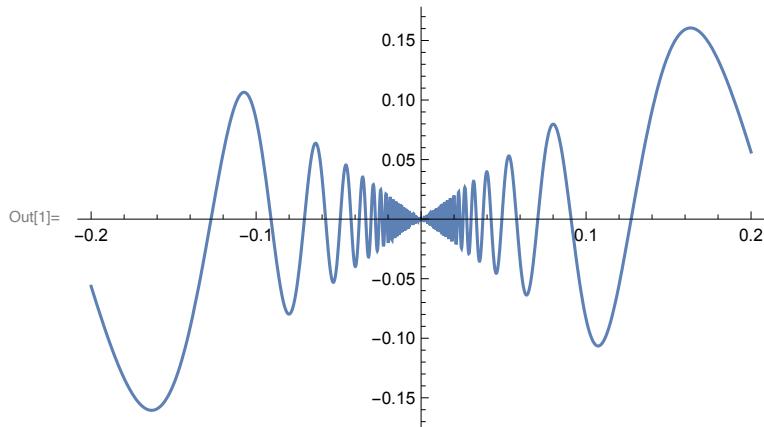
This limit does not exist, as shown in the graph below it oscillates between 1 and -1 for both $\sin(1/x)$ and $\cos(1/x)$.

In[1]:= Plot[Sin[1/x] * Cos[1/x], {x, -0.2, 0.2}]



Limit[sin(x) cos(1/x), x → 0]

In[1]:= Plot[Sin[x] * Cos[1/x], {x, -0.2, 0.2}]



This function approaches zero as x approaches zero, therefore, a limit does exist. Approaching from the negative or positive side of 0, it will eventually lead to zero. (as we are depending on the function sin(x) here and recall that sin(0) is zero.)

Example 3.1.8 Find example functions f and g such that the limit of neither $f(x)$ nor $g(x)$ exists as $x \rightarrow 0$, but such that the limit of $f(x)+g(x)$ exists as $x \rightarrow 0$.

This can be solved by a piecewise function:

$$\text{let } f(x) = \begin{cases} 5 & \text{if } x \geq 0 \\ -5 & \text{if } x < 0 \end{cases}$$

Now the $\text{Limit}[f(x), x \rightarrow 0]$ when $x \geq 0$ approaches 5 and when $x < 0$ it approaches -5

$$g(x) = \begin{cases} x - 5 & \text{if } x \geq 0 \\ x + 5 & \text{if } x < 0 \end{cases}$$

$\text{Limit}[g(x), x \rightarrow 0]$ when $x \geq 0$ approaches -5 and when $x < 0$ it approaches 5

$$f(x) + g(x) = \begin{cases} 5 + (x - 5) & \text{if } x \geq 0 \\ -5 + (x + 5) & \text{if } x < 0 \end{cases}$$

which simplifies to: $\begin{cases} x & \text{if } x \geq 0 \\ x & \text{if } x < 0 \end{cases}$

therefore this limit does not exist