

Chapter 3.2: Continuous Functions

Practice Problems

Emily West

Exercise 3.2.3: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ x^2 & \text{if } x^2 \text{ is irrational} \end{cases}$ prove it is continuous at 1 and not at 2.

$$\text{Limit}[f(x), x \rightarrow 1] = \text{Limit}[x, x \rightarrow 1] = 1$$

$$\text{Limit}[f(x), x \rightarrow 1^-] = \text{Limit}[x^2, x \rightarrow 1^-] = 1$$

$$\text{Limit}[f(x), x \rightarrow 1^+] = \text{Limit}[x^2, x \rightarrow 1^+] = 1$$

$$\text{Limit}[f(x), x \rightarrow 2] = \text{Limit}[x, x \rightarrow 2] = 2$$

$$\text{Limit}[f(x), x \rightarrow 2^-] = \text{Limit}[x^2, x \rightarrow 2^-] = 4$$

$$\text{Limit}[f(x), x \rightarrow 2^+] = \text{Limit}[x^2, x \rightarrow 2^+] = 4$$

When approaching the rationals from either the positive or negative side of 1 you will still get 1, this is true for the irrationals, since $1^2 = 1$. However, when approaching the rational number 2 on either side you'll get 2, but, for the irrationals when approaching 2^2 you'll always be approaching 4 on either side, not 2 making it not continuous at 2.

Exercise 3.2.4: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x) = \begin{cases} \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ Is f continuous?

Lets approach zero from both the positive and negative side.

let, $a_n = \frac{1}{2\pi n}$ approach zero for n approaching infinity

then, $f(a_n) = 0$ for all n

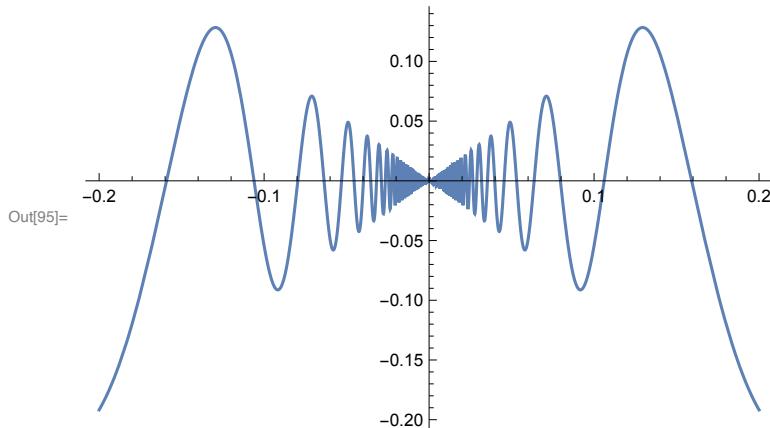
and $b_n = \frac{1}{\frac{\pi}{4} + 2\pi n}$ approach zero n approaching infinity

then, $f(b_n) = \frac{1}{\sqrt{2}}$ for all n

Since, a_n and b_n are approaching the same value but produce different values this is NOT continuous.

Exercise 3.2.5: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x) = \begin{cases} x \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ Is f continuous?

In[95]:= Plot[x * Sin[1/x], {x, -0.2, 0.2}]



$$\begin{aligned}
 0 &\leq |x \sin(1/x)| \\
 &= |x| |\sin(1/x)| \\
 &\leq |x| \\
 |\sin(1/x)| &\leq |x|
 \end{aligned}$$

Since $\sin(1/x)$ oscillates between 1 and -1 we will be focusing on how x affects this problem.

Think of $\sin(1/x) = \frac{1}{x} - \frac{1}{x^3 \cdot 3!} + \frac{1}{x^5 \cdot 5!} + \dots$ as a taylor series

then, $x \sin(1/x) = 1 - \frac{1}{x^2 \cdot 3!} + \frac{1}{x^4 \cdot 5!} - \dots$ approaches 0 as x approaches infinity.

YES, this function is continuous.

Exercise 3.2.10: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions. Suppose that for all rational numbers r , $f(r) = g(r)$. Show that $f(x) = g(x)$ for all x .

If we were to choose a rational number say x_n and from each interval we will get a rational sequence $\{x_n\}$ which converges to c .

Then let, $f(x_n) = g(x_n)$ for all n

by continuity of $f(x)$ and $g(x)$ we have:

$$\text{Limit}[f(x_n), n \rightarrow \infty] = \text{Limit}[f(x), x \rightarrow c] = f(c)$$

$$\text{Limit}[g(x_n), n \rightarrow \infty] = \text{Limit}[g(x), x \rightarrow c] = g(c)$$

therefore, $f(c) = g(c)$ for every c that belongs to rationals.

Exercise 3.2.11: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Suppose $f(c) > 0$. Show that there exists an $\alpha > 0$ such that

for all $x \in (c - \alpha, c + \alpha)$ we have $f(x) > 0$.

Proof by contradiction:

Suppose not, then for every positive integer $n \geq 1$ $\exists x_n$ with $|x_n - c| < \frac{1}{n}$ and $f(x_n) \leq 0$

Then $\text{Limit}[x_n, n \rightarrow \infty]$

and f is continuous so $\text{Limit}[f(x_n), n \rightarrow \infty] \leq 0$

but, $\text{Limit}[f(x_n), n \rightarrow \infty] > 0$ therefore, this is a contradiction and the supposition is false.

Exercise 3.2.15: Suppose $g : \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function such that $g(0) = 0$, and suppose $f : \mathbb{R} \rightarrow \mathbb{R}$ is such that $|f(x) - f(y)| \leq g(x-y)$ for all x and y . Show that f is continuous.

$g(x) \geq 0$ for every x

because $g(x) = g(x-c) \geq |f(x) - f(0)| \geq 0$

if $\epsilon > 0$ then $\exists \delta > 0 : g(z) \leq \epsilon$ if $|z| < \delta$

g is continuous at 0 and $y(0) = 0$ where $z=x-c$

$g(x-c) \leq \epsilon$ of $|x-c| < \delta$

and then $|f(x) - f(c)| \leq g(x-c) \leq \epsilon$ if $|x-c| < \delta$

therefore, f is continuous.